middle mile

Content tagged with "middle mile"

Displaying 61 - 70 of 119

Open Access

A key problem in improving Internet access has been ensuring residents and local businesses have high quality services. One means of ensuring high quality is via competition – if people can switch away from their Internet Service Provider, the ISP has an incentive to provide better services. However, the high cost of building networks is a barrier for new ISPs to enter the market - limiting the number of options for communities. Open access provides a solution: multiple providers sharing the same physical network.

Publicly owned, open access networks can create a vibrant and innovative market for telecommunications services. Municipalities build the physical infrastructure (fiber-optic lines, wireless access points, etc.) and independent Internet Service Providers (ISPs) operate in a competitive market using the same physical network. In this competitive marketplace, ISPs compete for customers and have incentives to innovate rather than simply locking out competitors with a de facto monopoly. 

Open Access: An arrangement in which one network is open to independent service providers to offer services. In many cases, the network owner only sells wholesale access to the service providers who offer all retail services (ie: triple-play of Internet, phone, TV, as well as home alarm systems, and other types of services).

Image
Stockholm, Sweden

The open access model is often compared to road systems. Roads are built and maintained through both public funds and taxes on vehicles, but do not themselves fill the coffers of municipalities. They are then used by everyone - trucking companies, UPS, taxi cabs, pizza delivery people, etc. - to deliver services or get around. For the municipality, the net gain of building robust road systems comes in economic development successes, improvements in quality of life, and other indirect benefits rather than direct profits. 

Building open access broadband networks along the same principles has proven immensely successful at fostering competition and producing economic gains in some U.S. communities, but also more extensively in Sweden, France, and Japan. In the United States, this model has been used less frequently, in part because of differences in national regulation and the power of the largest corporations to shape policy.

Stockholm, Sweden, has one of the world’s most advanced open access networks. Its Stokab dark fiber network covers 90 percent of the city’s homes and business. Photo of Stockholm courtesy of Edward Stojakovic through Flickr Creative Commons

"At the end of the day, if a company wants a connection through our network, using a provider, they can get that at a price point that makes sense, and it's competitive."  - Tad Deriso, President and CEO of the Mid-Atlantic Broadband Communities Corporation

In the United States, local governments that have their own community networks often own, operate, AND provide services on those networks. In a number of cases, local governments prefer to offer services directly because they can ensure a high quality experience. But many communities would rather not directly provide services because they don’t want to have to compete against powerful entrenched firms like the cable and telephone companies. Though the big cable and telephone companies could allow others to use their networks, they prefer to operate as monopolies.

Open access tends to be more common in middle-mile networks, which can connect large enterprises, than in last mile networks, which connect residents. Many ISPs are used to using middle mile networks that they do not control to connect their various last mile networks. Even large companies like AT&T lease connections from other providers in some cases.

Some private companies own and operate open access networks, such as CityLink Fiber in Albuquerque. However, other companies like CenturyLink and AT&T have long undermined any effort to require network owners to share their network infrastructure (even when it was paid for by the public under a regulated monopoly). When it comes to private companies building open access networks, we are supportive but fear the company could change its mind or be bought by a larger company with a different agenda. CityLink has written open access into its franchise agreement to guard against these concerns.

"We don't have to have the personnel to do that. We don't have to manage that infrastructure, and get all those calls for services. And having the private business do what they do best made sense." - Kim Kleppe, Information Systems Director of Mount Vernon

Open access networks spur competition between service providers - lowering both the costs for subscribers and the barriers to new service providers entering the market. They facilitate economic development, as new firms look to relocate to areas with more choices for reliable, high-speed Internet access and existing businesses can be better served.

But perhaps most importantly, the benefits of publicly owned open access networks are that the community enables innovation, ensures real choices, and has a strong voice over its own future. Below, we discuss some of the key benefits and challenges of this model. Additionally, we list networks where the model is in practice today.

Open Access Arrangements

- E.g. nDanville, Virginia

Three-layer: In the three-layer model, the municipality builds and owns the network, an independent party operates the network, and service providers bring fiber directly into homes and businesses.

- E.g. Rio Blanco County, Colorado

Below is an example of an open access arrangement. The network owner funds the construction; the operator oversees construction and maintenance. The retailers provide the Internet service required by us, the end users, who likely just want to get online to get informed, play games, and do work.

Image
Open Access Networks

Infographic from Peggy Dolgenos, Cruzio Internet

Middle mile Open Access Network: The middle mile is the section of a network that connects local, last mile networks to the backbone of the Internet. Middle mile networks can cut across state boundaries and are able to transport large quantities of bandwidth between network endpoints. These networks may also connect towers (often for wireless services), community anchor institutions, and other large customers. Large firms like Verizon and Frontier have been known to sometimes lease middle mile circuits although they steadfastly refuse to use open access last mile networks.

- E.g. The Three Ring Binder in Maine, Mid-Atlantic Broadband in Virginia, NoaNet in Washington

Last mile Open Access Network: The last mile is the connection between the service provider and the home subscriber. On this type of network, home subscribers will have the option among multiple independent service providers delivering Internet access, telephone services, television, and potentially other services (burglar alarms, etc.). Many of these network in the United States start by serving businesses and then expand to residents incrementally.

- E.g. Palm Coast Fiber in Florida, Mount Vernon Fiber Optics and Chelan County Public Utility District in Washington

Dark Fiber Open Access Network: Dark fiber is laid but not lit during fiber buildouts, and left as unused capacity until needed or desired. The act of attaching the fiber to the lasers that send bursts of information across it is called "lighting" it. This type of network is inherently open access, as any provider could lease it (often with an agreement called an IRU, Indefeasible Right to Use). However, only large firms, very technical firms, and ISPs tend to be interested in leasing dark fiber.

- E.g. Axcess Ontario and Southern Tier Network in New York, Palo Alto Utilities in California

Financing Open Access Networks 

Like many community owned networks, building open access networks can be financed through several different mechanisms. 

Some, like Rio Blanco County have taken advantage of state grants to subsidize their network build-out. Rio Blanco received $2 million in matched funds from the Colorado Department of Local Affairs. It then committed another $7 million of its own funds to the project, made up of $2 million in federal mineral lease revenues and $5 million from the county's general fund.

With increasing federal emphasis on broadband, government funding for municipal projects might more often subsidize infrastructure investments in both lit and dark fiber networks. That said, communities have a number of tools at their disposal to fund these networks without federal money.

In New York, one community that was wary of relying on federal funding found another way to cover startup costs for its dark fiber open access network, Axcess Ontario. They tapped into a municipal economic development branch - the Ontario County Office of Economic Development/Industrial Development Agency. The network is now run as a non-profit, with a board of 12, but no paid employees. Revenues from businesses that want to use the network services pay the operation, maintenance, and debt costs. 

Many communities, like Palm Coast, Florida, have opted for a phased approach to build their open-access infrastructure. Palm Coast FiberNET relies on a capital projects fund - a way of managing financial resources to complete large-scale infrastructure projects like highways. In building Palm Coast FiberNet, the City drafted a 5-year plan that split the $2.5 million infrastructure cost into five investments of $500,000. It connected community anchor institutions and government offices at the same time as it connected local businesses. The public savings from ending previous contracts with Comcast offset construction costs.

Image
Rio Blanco

Another approach is to use Tax Increment Financing (TIF), a tool that allows specified districts to borrow funds for redevelopment that are to be paid back in future taxes, to subsidize infrastructural costs. TIF has aided in Bozeman, Montana’s effort to bring next-generation technology to their community.   

Some networks place more of the financial responsibility on the network subscribers. In the utility fee model, subscribers (or all community members, depending on the arrangement) pay a monthly surcharge, which helps to fund the construction and maintenance of the network. A version of this approach is being used in Ammon, Idaho, which has two fees. The first is for the fixed cost of building it, and the second is for operation and maintenance. This last fee varies based on the total number of network subscribers: the more subscribers to the network, the less the individual cost.

Other networks use a wholesale model, selling bandwidth in bulk to ISPs, which can then be bundled, often in a triple-play (phone, TV, Internet) arrangement, and sold to customers. ISPs pay for the ability to provide services over the shared network. For example, Mount Vernon, Washington receives 15 percent of the gross income of each ISP that uses its network. In other cases, ISPs pay a one-time connectivity fee to be able to use wholesale services.

In some cases, communities have built their networks with the assistance of federal loans/grants along with community and private sector contributions. Fast Roads in New Hampshire is one example of this. Fed up with poor service in western New Hampshire, a coalition of municipalities built the Fast Roads network using a combination of stimulus funds from the American Recovery and Reinvestment Act (ARRA), community contributions, and private donations.

Even with these many options for financing, building a citywide network immediately is challenging. Many community networks start out incrementally. The revenue or savings from one section pays for the construction of the next section. Most begin by connecting community anchor institutions before moving on to connect businesses and residents. The public savings from ending contracts with incumbent ISPs enables communities to fund the expansion of the network, such as with Santa Monica, California’s City Net. Incremental financing works, especially in cities without a public power utility.

Challenges for Open Access Networks

While many municipal networks face challenges from incumbent providers and state laws, open access networks encounter a unique set of problems. The most obvious being, how to attract service providers to the network? After that, it then becomes a matter of maintaining the reputation of the network. In the long term, however, there may develop concern over price competition and consolidation. This section aims to provide solutions and advice for these open access problems.

Challenge 1: Getting Service Providers

There’s not much use in an open access network without service providers offering a variety of competitive services. In order to ensure the network’s success, there should be at least one core provider at the start. Some community networks begin with an operator who also acts as an ISP. For a set period of time, the operator will be the sole ISP before opening up the network to other ISPs. Westminster, Maryland, pioneered this model when they built a community network with the ISP Ting.

It may take time for ISPs to join the network. While incumbent ISPs do not often want to do business on the public open access infrastructure, other smaller, local ISPs may join. Some communities hire a specific person, such as the network director, to recruit service providers. Others wait for the reputation of the network’s speed and reliability to entice ISPS to the new market.

Challenge 2: Reputation

After securing service providers, the community faces a new challenge, building and maintaining the reputation of the open access network. In extreme cases where an ISP acts in bad faith, a network’s reputation will become so maligned that it struggles to rebuild its brand and attract new, better ISPs.

For example, Provo, Utah is often cited as proof of the failure of municipal networks. The network’s wholesale model (mandated by the state) relied on private ISPs that overpromised, under-delivered, and bowed out of the market too quickly. Provo’s network reputation was severely compromised.

Challenge 3: Price Competition and Consolidation

Some fear that in the long term ISPs will consolidate, leaving us once again with a duopoly or monopoly. These fears have yet to be realized, but it has become more of a topic in Sweden where open access networks have been in existence longer.

Over time, if the only differentiation between service providers is price, then eventually those profits will be competed away. Eventually people will choose the cheapest plan that suits their needs, and the ISPs will have to consolidate. This will diminish the number of options for the consumer – leading to the situation that open access meant to avoid all along. ISPs will have to take care to differentiate their services, preferably by competing for providing the most friendly customer support, in order to stay competitive and in business.

U.S. Open Access Networks 

ILSR is currently tracking more than 30 open access networks across the United States.

Last Mile Networks:

NameCommunity ServedISPsSubscribers
Ammon Fiber Optic UtilityAmmon, ID2No available data
Ashland Fiber Network**Ashland, OR44,200 Internet subscribers; 1,800 cable television (Data from 2010)
Benton PUD*Benton County, WA5No available data
Bozeman FiberBozeman, MT5No available data. Only serves business subscribers.
Chelan PUD*Chelan County, WA11Offers access to 70% of 70,000 person county ~50,000 potential; 5,700 confirmed end users (Data from 2007)
Clallam PUD*Clallam County, WA6No available data
Click! Network**Tacoma, WA3No available data
Cortez Community NetworkCortez, CO7250 businesses (Data from 2014)
Douglas County Community Network*Douglas County, WA6Offers access to 45% of 15,000 person county ~6,900 (Data from 2013)
Eastern Shore of Virginia Broadband Authority*Accomack and Northampton Counties, VA620-25% of Eastern Shore residences along existing fiber lines (Data from 2018)
EUGNet*Eugene, OR632 connected buildings, 62 total signed up (Data from 2018)
FiberNETPalm Coast, FL122 businesses (Data from 2011); 90% of 1,600 businesses in fiber range
Franklin PUD*Franklin County, WA9Available to 68,000 customers (2015)
Grant PUD*Grant County, WA1616,000 subscribers (2017)
Grays Harbor PUD*Grays Harbor County, WA10No available data
Holland Utilities*Holland, MI6450 businesses (Data from 2018)
Jefferson PUD*Jefferson County, WA8No available data
Kitsap PUD*Kitsap County, WA-186 Active Ethernet circuits (Data from 2015)
Mason PUD*Mason County, WA5No available data
MetroNet ZingSouth Bend, IN19More than 150 subscribers (Data from 2014)
Mount Vernon Fiber OpticsMount Vernon, WA9160 businesses, 65 government entities (Data from 2017)
nDanvilleDanville, VA3150 businesses; one residential community (Data from 2015)
Okanogan PUD*Okanogan County, WA9No available data
Pacific PUD*Pacific County, WA3No available data
Pend Oreille County Community Network System*Pend Oreille County, WA111,345 business and residential connections (Data from 2015)
Rio Blanco County Broadband ProjectRangely and Meeker, Colorado2No available data
Roanoke Valley Broadband AuthorityRoanoke and Salem, VA-No available data
The Wired RoadGrayson & Carroll counties, city of Galax, VA380 homes; multiple anchor institutions (Data from 2012)
UTOPIA Fiber15 Cities3525,000 FTTH subscribers (2019)

Middle-Mile Networks:

NameCommunity ServedISPsSubscribers
Columbia county Broadband UtilityColumbia County, Ga5150 CAIs (Data from 2017)
Mass Broadband 123120 Mass. Communities12More than 1,100 CAIs, with plans to connect 400,000 homes & businesses (Data from 2014)
Medina County Fiber NetworkMedina County, OH-No available data
Mid Atlantic BroadbandSouthern VA11Reaches 100% of regional businesses, industrial, and technology parks (Data from 2014)
NoaNetWashington State61260,000 last mile customers (Data from 2015)
OpenCapeCape Cod, MA-110 CAIs (Data from 2016)
Southern Tier NetworksChemung, Schuyler, and Steuben Counties, NY5260 miles dark fiber available open for lease (Data from 2015)
The Three Ring BinderMaine924 middle-mile customer agreements in place (Data from 2014)

* PUD = Public Utility District. Because of Washington state barriers, PUDs are only allowed to sell wholesale broadband services. They are not allowed to retail services directly to customers, so they employ an open access approach. 9 PUDs are part of the statewide open-access network NoaNet.

** Hybrid Fiber-Coax (HFC) Networks, not FTTH

Planned Open Access Networks 

(Data from 2016)

CommunityDetails
Dakota County, MinnesotaOpen access part of long term strategy
Ellsworth, Maine$28,000 in tax increment financing; 5 potential ISPs
Hudson, OhioCity conducted residential and business survey; approved contract with consultant for design + implementation
Missoula, MontanaLocal business survey; identification of ISPs
Sanford, MainePartnered with GWI; received a grant from the U.S. Economic Development Administration
Westminster, MarylandPartnered with Ting (initial period of exclusivity); built network

Additional resources

Ammon's Model: The Virtual End of Cable Monopolies

Remote video URL

The city of Ammon, Idaho is building the Internet network of the future. Households and businesses can instantly change Internet service providers using a specially-designed innovative portal. This short 20 minute video highlights how the network is saving money, creating competition for broadband services, and creating powerful new public safety applications.

Connect This! Episode 4 - Open Access Networks

Remote video URL
Open Access Networks with Travis Carter (CEO, US Internet), Jeff Christensen (President, EntryPoint Networks), and Dane Jasper (CEO and Co-founder, Sonic)

OpenCape Institutional User Sees Internet Speed Double

A major institutional customer on the OpenCape fiber optic network in the Cape Cod region of Massachusetts is now enjoying Internet access at double the speed. 

CapeCod.com reports that local CapeNet, the supplier of service over the OpenCape network, has doubled the Internet speed for the Woods Hole Oceanographic Institution (WHOI) from 1 Gigabits per second (Gbps) to 2 Gbps. By switching to CapeNet as its primary provider, WHOI now also has the ability to expand up to 10 Gbps.

Previously, CapeNet provided 100 megabits to WHOI as a secondary provider, but the research and educational organization was interested in dramatically increasing its Internet capacity. In order to increase capacity, WHOI needed to make the switch to CapeNet.

CapeNet, the private provider that operates via the CapeNet fiber infrastructure, offers services across southeastern Massachusetts and to every town on the Cape. In addition to 150 institutional customers, the network connects businesses that handle large data, libraries, colleges, high schools, research facilities, municipal buildings, healthcare clinics, and public safety agencies. It is middle mile infrastructure, which means it links the Internet backbone to organizations and businesses that serve end users.

To become the primary broadband provider for WHOI, CapeNet installed additional equipment in Boston, Providence, and throughout the research campus. “It was actually quite a substantial undertaking in order to expand their capabilities,” said Alan Davis, chief executive officer of CapeNet.  

CapeNet On The Move...To Businesses and Residents?

CapeCod.com also reports that CapeNet is: 

...[C]ontinuing to expand services to educational institutions on the Cape. 

Electric Coop Green Lights Fiber Pilot Project

Electric coops empowered communities during rural electrification in the 1930s, connecting people to power grids. Now electric coops have the opportunity again to empower communities through affordable, high-speed connectivity. In Colorado, the Delta-Montrose Electric Association (DMEA) is moving forward with a pilot project for a Fiber-to-the-Home (FTTH) network.

Unanimous Decision for Fiber

In late December 2015, the DMEA Board of Directors gave the green light to start the pilot project. The move to provide connectivity comes as no surprise. DMEA considered providing middle mile connectivity for a long while before coming to the decision to instead deploy FTTH. If the coop had chosen to develop the middle mile network, they would not have connected members’ homes, but instead would have built infrastructure connecting to the larger Internet. 

Many projects funded with American Recovery and Reinvestment Act (ARRA) stimulus funds were built as middle mile networks. At the time, policy makers theorized that middle mile projects would encourage private sector last mile providers to complete the link to subscribers. Over time, this theory has proven too optimistic. Municipalities and smaller private providers are connecting to middle mile networks in some places, but the large scale build out expected from big name providers is just not happening.

For DMEA, FTTH is their solution: building a larger network and taking the fiber directly to members’ homes. Virginia Harman, DMEA spokesperson, described the decision to do FTTH as a reaction to member demand. In a recent survey, members highlighted the importance of high-speed Internet access for their homes. The goal now is to build the network in a sustainable way.

Phased Approach to Connectivity

Minnesota's Arrowhead Region Points to High-Speed Internet

Welcome to high-speed Internet on the Iron Range! This past fall, the Northeast Service Cooperative (NESC) completed a multi-year project, a fiber optic network spanning nearly 1,000 miles, on Minnesota’s north shore.

The project, the Northeast Fiber Network, connects public buildings, such as health care facilities, community libraries, colleges and universities, tribal facilities, and government offices. The fiber provides the opportunity for next-generation connectivity in many unserved and underserved areas of eight counties: St. Louis, Cook, Lake, Pine, Itasca, Koochiching, Carlton, and Aitkin. It’s exciting to see this rural project finally come to fruition.

Institutional Network: Now to Go the Last Mile

It’s an institutional network, which means it brings high-speed Internet to community anchor institutions throughout the region. So far, about 320 public entities, including 31 school districts, have connected to the network. The network is designed to provide middle mile connectivity for community anchor institutions, not to bring connectivity to residents and businesses of the region. As with most federally funded projects, the plan is to provide middle mile infrastructure with the hope that the private sector will be more able or willing to invest in last mile connectivity.

That last mile, to homes and businesses, presents a challenge. NESC is leasing fiber to public and private providers and working to ensure that the network can serve as a backbone to greater connectivity. Actively working with private providers, NESC offers a bright future for unserved and underserved communities on the Iron Range.

Collaboration & Funding

Fifteen Fun Facts about NoaNet - Fifteen Years of Accomplishments

Northwest Open Access Network (NoaNet) was just a dream back in 2000, but, fifteen years later, it’s one of the largest networks in the state of Washington. NoaNet is celebrating fifteen years of accomplishments, so we compiled fifteen fun facts everyone should know about this community network.

1. One of the first Open Access networks in the U.S.
Back in 2000, people in rural Washington watched as the dot-com and telecom boom passed them by. Frustrated that large ISPs refused to build infrastructure near them, the people created NoaNet and allowed anyone to use it through Open Access. This type of design encourages multiple service providers to share the infrastructure and local communities own the network.

2. Almost 2,000 miles of fiber
You know that amazing, next-generation technology that Google is rolling out in select cities across the U.S.? Yeah, people in Washington started using fiber optic cables fifteen years ago to bring high-speed Internet to their communities. Now, NoaNet extends almost 2,000 miles through both rural and metro areas.

3. It’s a giant Institutional Network
With all that fiber, NoaNet connects 170 communities and around 2,000 schools, libraries, hospitals, and government buildings. It serves as a middle mile network, connecting the public institutions of small towns to the greater Internet. 

4. 40% of Washington government traffic, by 2007
And that’s just within the first seven years!

5. 61 last mile providers
From NoaNet’s infrastructure, private providers bring connectivity the last mile to homes and businesses. Having publicly-owned middle mile reduces the capital costs of building last mile infrastructure - that means more providers can compete with one another and better prices for everyone. Currently, there are over 260,000 customers!

Flipping the Switch in Santa Fe

In May, Chris introduced you to Sean Moody from Santa Fe's Economic Development Division, to explain how the community was investing in a new fiber link to better serve the local business community. With a little competition, Santa Fe officials expect more choice, better connectivity, and improved services.

CenturyLink controls the community's only connection to the Internet and the line bringing access to the web into the downtown district. Santa Fe's $1 million investment creates another path to encourage other providers to compete. Residents in Santa Fe pay approximately $50 per month for average speeds of 5 Megabits per second (Mbps) while nearby Albuquerque pays the same for 10 Mbps.

The situation may soon change.

On Monday, December 14th, the community will celebrate the investment as they "Flip the Switch and Connect Santa Fe to the Future." The event will take place at the Santa Fe City Offices and will begin at 9 a.m. Mayor Javier M. Gonzales will flip the switch at 10 a.m. to activate Santa Fe’s very first gigabit-speed Internet connection.

From the announcement:

Mayor Gonzales and the City’s Economic Development Division invite you to celebrate activating the first gigabit district in Santa Fe through Santa Fe Fiber, the City’s innovative broadband infrastructure project.

...

On Monday, December 14th from 9 until 11 AM Mayor Gonzales will be joined by special industry guests to flip the switch and experience first-hand the power and potential of gigabit-speed Internet delivered over the City’s newly completed fiber optic backbone. The community is invited to bring devices and try out the new speed!

What's Next For Southern Tier Network?

With construction of a major community broadband network behind them, local leaders in New York State’s Southern Tier region are now considering the potential for the recently completed dark fiber network.

Since becoming operational in 2014, the Southern Tier Network (STN) is already serving over 100 industrial and government service entities across the region. STN is a not-for-profit, local development corporation that built, owns, and manages the network for the region.

Jack Benjamin, president of economic development organization, Three Rivers Development Corporation, explained the value of the network to the region in a July Star Gazette article:

This backbone fiber that we've got here is a huge benefit for us going forward. As this technology piece continues to be even more important in the future, because it's going to be changing all the time, we will have the base here that allows us to change with the marketplace. Part of our thought process here is we want to keep what we've got in terms of businesses and provide the infrastructure that allows them to stay here and be competitive.

Building Out for the Future

When we wrote about the STN in 2011, the planned backbone of the network included a 235-mile fiber-optic ring stretching across Steuben, Schuyler, and Chemung counties. Glass producer Corning paid for $10 million of the initial $12.2 million cost to deploy with the remaining balance paid for by the three counties where the network is located. The STN is now 260 miles total, including strands that run to city centers and select business areas in the tri-county area.

Member Owned Networks Collaborate for Rural Georgia Libraries

A member-owned nonprofit network and a telecommunications cooperative are helping seven regional libraries in mountainous northeast Georgia improve services for patrons with fast, affordable, reliable connectivity.

Collaboration for Community

The North Georgia Network Cooperative (NGN), in partnership with member-owned Georgia Public Web (GPW), recently launched 100 Megabit per second (Mbps) symmetrical broadband access speeds in seven library facilities in the Northeast Georgia Regional Library system (NEGRLS). Upgrades in some of the locations were significant. At the Helen library campus, the facility switched from a 6 Mbps download DSL connection to the new service.

The new initiative also enables the complementary “NGN Connect” service which includes hosted Wi-Fi service and a VoIP telephone system at each location. The upgrade extends from the cooperative's role in the Education Exchange, Georgia's only regional 10 Gigabit per second (Gbps) private cloud for exclusive use by school systems launched last September.

Helping Rural Georgians Help Themselves

Donna Unger, director of member services for NGN, explained NGN’s mission for the project:

I've often heard libraries build communities, it's very fitting that we are here today celebrating the new 100 Mbps connection to the Northeast Georgia Regional Library System provided by NGN Connect. This is what we're about, NGN's foundation was built upon the communities in which we serve. It's becoming more critical for libraries, government, education and businesses alike to have reliable and affordable bandwidth to meet the daily demands of the ever-changing dynamics of today's digital world.

NEGRLS Director Delana L. Knight highlighted the initiative’s benefits:

Offering free access to this important resource is another way that our local public libraries are empowering our communities by providing support for job seekers, students, as well as almost limitless educational and entertainment opportunities for all citizens.

Video on OpenCape: How Cape Cod Created a Fiber Network

Almost ten years ago, Dan Gallagher, a technology director at Cape Cod Community College, could not get the bandwidth the college needed from incumbent service providers. After communicating with others in the areas, it soon became clear that a number of others shared the same experience.

“We asked anyone who thinks this is a problem for their business or entity here on the cape to come to cape cod community college to talk about it and a hundred people showed up.” - Dan Gallagher in eSTEAMers

The community formed non-profit OpenCape, and created a 350 mile fiber optic network and a colocation data center with $40 million in combined BTOP grants, state grants, and private funding. Completed in late 2012, the project proved to be well-worth the wait. Three large entities almost immediately became customers on the network: the Joint Base, the Woods Hole Oceanographic Institute, and Hydroid, Inc, a private company.

Now the senior consultant for OpenCape, Dan Gallagher describes the project in depth in this episode of eSTEAMers by Cape Cod Community Media Center.

More Details on the Northwest Open Access Network - Community Broadband Bits Episode 164

Just a few short weeks ago, we interviewed Dave Spencer, the Chief Operating Officer for the Northwest Open Access Network (NoaNet) in Washington. We offered a good overview, but got some requests for more details so Dave returns this week for a more focused discussion in episode 164. 

We discuss the specific services that are available and how the retail service providers access them as well as NoaNet's enlightening approach to peering so its service providers have the benefits of low cost, high quality Netflix videos, as an example. We also discuss the legal status of NoaNet as a nonprofit municipal organization. Finally, we discuss the other services that NoaNet makes available and how some of the fees are structured. 

This show is 23 minutes long and can be played on this page or via Apple Podcasts or the tool of your choice using this feed.

Transcript below.

We want your feedback and suggestions for the show-please e-mail us or leave a comment below.

Listen to other episodes here or view all episodes in our index. See other podcasts from the Institute for Local Self-Reliance here.

Thanks to bkfm-b-side for the music, licensed using Creative Commons. The song is "Raise Your Hands."